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1. Introduction

The study of black holes and their thermodynamics has led to a number of important

advances in string theory. Recently, the construction of smooth geometries corresponding to

individual microstates of the black holes (more precisely, in a dual field theory description,

to individual pure states which contribute to the thermal ensemble) has received extensive

attention. Supersymmetric two-charge microstates are now reasonably well-understood [2 –

10] (see [11, 12] for a review), and substantial progress has been made on understanding

the supersymmetric three-charge microstates [13 – 21] and the dimensional reduction to

four dimensions [22 – 25]. Our aim in this paper is to continue the investigation of non-

supersymmetric states initiated in [1].

In the three-charge case, an important step was the rewriting [16] of the first examples

of smooth three-charge geometries in the fibered form used in the classification of super-

symmetric solutions [26]. This led to the realisation that the base space for these solutions

had a “pseudo-hyper-Kähler” form, which led to the generalisations to multi-center solu-

tions [17, 18]. These solutions all have a U(1) isometry in the base. This may appear

to be an unnatural restriction for the five-dimensional case, but if we add a NUT charge

and reduce along the isometry direction, this family of solutions naturally corresponds to

microstates of four-dimensional asymptotically flat black holes [22 – 24]. This focus on the

centers was refined in [24], where it was conjectured that the general four-dimensional su-

persymmetric microstate is made up of half-BPS “atoms”. This will be described by a

multi-center geometry if the distance between the individual “atoms” is sufficiently large,

or by passing to an open string description if the separations are small. This separation is

modulated by the string coupling.

– 1 –



J
H
E
P
0
8
(
2
0
0
7
)
0
5
5

We would like to apply the lessons learnt from this analysis to the non-supersymmetric

solutions of [1]. These solutions are qualitatively similar to the simplest supersymmetric

two-center three-charge solutions studied in [14 – 16], so analysing them in a similar way

should shed some light on the similarities and differences, and ultimately guide us to-

wards constructing more general non-supersymmetric microstates. The plan is thus to first

Kaluza-Klein reduce the solutions to five dimensions, where we can see that the solutions

have two centers. We will give a description of the five-dimensional solution as a T 6 com-

pactification from M-theory, which makes the symmetry between the charges manifest.

This five-dimensional solution has a U(1) isometry in the base. It is natural to consider a

further dimensional reduction to four dimensions along this isometry to attempt to obtain

a more direct physical interpretation, as in [24].

Implementing this program leads to some surprises: first, in the five-dimensional so-

lution, the two centers are locally described by non-supersymmetric orbifolds. We had

expected to find an orbifold singularity at these points in the five dimensional description,

but it is a surprise that the supersymmetry is broken even locally: in the six-dimensional

description, the full asymptotically flat solution is non-supersymmetric, but it has (for

suitable choices of parameters) a near-core AdS3 × S3 geometry, in which supersymmetry

is restored. This supersymmetry is broken by the choice of Kaluza-Klein reduction: even

if we consider the Kaluza-Klein reduction from the exact AdS3 × S3 geometry, the five-

dimensional solution contains non-supersymmetric orbifold singularities. This leads to the

first general lesson we wish to draw: the picture of microstates as made up of half-BPS

“atoms” does not extend to the non-supersymmetric case. We must consider more general

kinds of basic building blocks.

If we reduce to four dimensions, we find our second surprise: the four-dimensional

solution is not smooth away from the centers. There is a conical singularity which connects

the two centers. The ambiguity in the definition of the Kaluza-Klein gauge field on this

conical line singularity makes it impossible for us to unambiguously associate brane charges

with the two centers. This suggests that unlike in the supersymmetric case, we cannot treat

the two centers independently, and the physical interpretation of these centers in the four-

dimensional description is much less clear here.

One of the ultimate goals of this work was to make progress towards constructing

more general non-supersymmetric solutions. In general, constructing non-supersymmetric

solutions is much more difficult than supersymmetric ones. In the non-supersymmetric case

we have to deal directly with the non-linear, second order equations of motion, which makes

it impossible to construct solutions in terms of harmonic functions, as can be done in the

supersymmetric case. The results we have obtained show that the non-supersymmetric case

is quite different from the supersymmetric one, and suggest that it will be difficult to extend

the work on supersymmetric cases to construct multi-center non-supersymmetric solutions.

However, it may still be possible at least to construct non-supersymmetric solutions which

are asymptotically flat in four dimensions; work on this problem is ongoing [27].

The plan of the rest of the paper is as follows: in the next section, we review the

non-supersymmetric solitons of [1] in type IIB supergravity. In section 3, we convert

these solutions to an M-theory form, write the metric in terms of the integer parameters

– 2 –



J
H
E
P
0
8
(
2
0
0
7
)
0
5
5

of the solitons, and discuss the relation to the supersymmetric case. In section 4, we

analyse the structure of the M-theory solutions, with a particular focus on the orbifold

singularities appearing in this five-dimensional description. Finally, in section 5, we discuss

the dimensional reduction to four dimensions.

2. Review of construction

We start from the metric for the D1-D5-P black string, written in the fibered form in [1],

ds2 =
1

√

H̃1H̃5

{

−(f − M)
[

dt̃ − (f − M)−1M cosh δ1 cosh δ5(a1 cos2 θ̄dψ + a2 sin2 θ̄dφ)
]2

+ f
[

dỹ + f−1M sinh δ1 sinh δ5(a2 cos2 θ̄dψ + a1 sin2 θ̄dφ)
]2

}

+

√

H̃1H̃5

{

r̄2dr̄2

(r̄2 + a2
1)(r̄

2 + a2
2) − Mr̄2

+ dθ̄2 (2.1)

+ (f(f − M))−1
[(

f(f − M) + fa2
2 sin2 θ̄ − (f − M)a2

1 sin2 θ̄
)

sin2 θ̄dφ2

+ 2Ma1a2 sin2 θ̄ cos2 θ̄dψdφ

+
(

f(f − M) + fa2
1 cos2 θ̄ − (f − M)a2

2 cos2 θ̄
)

cos2 θ̄dψ2
]

}

+

√

H̃1

H̃5

4
∑

i=1

dz2
i ,

where t̃ = t cosh δp − y sinh δp, ỹ = y cosh δp − t sinh δp,

H̃i = f + M sinh2 δi, f = r̄2 + a2
1 sin2 θ̄ + a2

2 cos2 θ̄. (2.2)

This metric is more usually written in terms of functions Hi = H̃i/f . Writing it in this

way instead makes it clear that there is no singularity at f = 0. The above metric is in the

string frame, and the dilaton is

e2Φ =
H̃1

H̃5

. (2.3)

The 2-form gauge potential which supports this configuration is

C2 =
M cos2 θ̄

H̃1

[(a2c1s5cp − a1s1c5sp)dt + (a1s1c5cp − a2c1s5sp)dy] ∧ dψ (2.4)

+
M sin2 θ̄

H̃1

[(a1c1s5cp − a2s1c5sp)dt + (a2s1c5cp − a1c1s5sp)dy] ∧ dφ

− Ms1c1

H̃1

dt ∧ dy − Ms5c5

H̃1

(r̄2 + a2
2 + Ms2

1) cos2 θ̄dψ ∧ dφ,

where ci = cosh δi, si = sinh δi. We take the T 4 in the zi directions to have volume V , and

the y circle to have radius R, that is y ∼ y + 2πR.

This metric and fields describes a family of solutions with D1, D5 and P charges, la-

belled by the seven parameters M,a1, a2, δ1, δ2, δ3, R. It was shown in [1] that the geometry
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is smooth everywhere and contains no closed timelike curves if these parameters are fixed

in terms of two integers m,n and the charges q1, q5, qp by the relations

M = a2
1 + a2

2 − a1a2

(c2
1c

2
5c

2
p + s2

1s
2
5s

2
p)

s1c1s5c5spcp
, (2.5)

spcp

(a1c1c5cp − a2s1s5sp)
R = n,

spcp

(a2c1c5cp − a1s1s5sp)
R = −m,

R =
Ms1c1s5c5(s1c1s5c5spcp)

1/2

√
a1a2(c

2
1c

2
5c

2
p − s2

1s
2
5s

2
p)

. (2.6)

If we introduce dimensionless parameters

j =

(

a2

a1

)1/2

≤ 1, s =

(

s1s5sp

c1c5cp

)1/2

≤ 1, (2.7)

then the integer quantisation conditions determine these via

j + j−1

s + s−1
= m − n,

j − j−1

s − s−1
= m + n, (2.8)

Which gives

s2 =
m2 + n2 − 1 −

√

(m2 − n2)2 − 2(m2 + n2) + 1

2mn
. (2.9)

Note that this constraint is invariant under the permutation of the three charges. We can

rewrite the mass (2.5) as

M = a1a2(s
2 − j2)(j−2s−2 − 1) = a1a2nm(s−2 − s2)2, (2.10)

so having solved for s in terms of m,n, we can use this to write a1a2 in terms of M . The

only remaining step is to solve for M in terms of m,n and the charges. This was left

entirely implicit in [1]; we will say a little more about it below.

An unsatisfactory feature of this story is the highly implicit nature of the above con-

ditions. We will see below that we can write the metric explicitly in terms of the integer

quantised parameters m,n and a single length scale, which is related to M and hence

determined in terms of the charges qi. This will bring the analysis much closer to the su-

persymmetric cases. It is worth pointing out at this stage that it would equally have been

possible to rewrite it in this way in the type IIB form above; this rewriting is independent

of the transformation to the M-theory form.

In what follows, we will usually assume m,n are coprime. If we do not, there will be

additional orbifold singularities in the M-theory form of the solution.

3. M-theory form

The general study of solutions in the supersymmetric case is conducted in an M-theory

picture, where the symmetry between the three charges is manifest. Our first task is
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therefore to translate the type IIB form in which the non-supersymmetric solutions were

first obtained to an M-theory form.

To pass to the M-theory form, we T-dualise on z3, z4 to get to a D3-D3-P solution,

and then T-dualise on y to get to D2-D2-F1 in IIA. The IIA solution is then uplifted to

M-theory. There is a symmetry between the charges in the M-theory picture, so we rename

the charges to Q1 = q1, Q2 = q5, Q3 = qp. For the general family of rotating black string

solutions (2.1), the resulting solution is

ds2
11 = −(H̃1H̃2H̃3)

−2/3f(f − M)(dt + k)2 + (H̃1H̃2H̃3)
1/3ds̄2

4 + ds2
T 6 , (3.1)

where

k = −Mc1c2c3

f − M
(a1 cos2 θ̄dψ + a2 sin2 θ̄dφ) +

Ms1s2s3

f
(a2 cos2 θ̄dψ + a1 sin2 θ̄dφ), (3.2)

and the four-dimensional base metric is

d̄s
2
4 =

r̄2dr̄2

g(r̄)
+dθ̄2+(f(f−M))−1[(f(f−M)+f(a2

2−a2
1) sin2 θ̄+Ma2

1 sin2 θ̄) sin2 θ̄dφ2

+ 2Ma1a2 sin2 θ̄ cos2 θ̄dφdψ+(f(f−M)+f(a2
1−a2

2) cos2 θ̄+Ma2
2 cos2 θ̄) cos2 θ̄dψ2],

(3.3)

where

g(r̄) = (r̄2 +a2
1)(r̄

2 +a2
2)−Mr̄2 ≡ (r̄2−r2

+)(r̄2−r2
−), f = r̄2 +a2

1 sin2 θ̄+a2
2 cos2 θ̄. (3.4)

Note that the coordinate r̄ lives on the interval [r+,∞); this fact will become clearer in

some of the later coordinate systems. The metric is asymptotically flat in five dimensions.

The coordinates θ̄, φ, ψ are conventional coordinates on the S3 at large r̄. The metric on

the T 6, which plays little part in our discussions, is

ds2
T 6 = (H̃1H̃2H̃3)

1/3(H̃−1
1 (dz2

1 + dz2
2) + H̃−1

2 (dz2
3 + dz2

4) + H̃−1
3 (dz2

5 + dz2
6)). (3.5)

The gauge field in eleven dimensions is

C(3) = A1 ∧ dz1 ∧ dz2 + A2 ∧ dz3 ∧ dz4 + A3 ∧ dz5 ∧ dz6, (3.6)

where

Ai = − 1

H̃i

[Qidt+Mcjcksi(a1 cos2 θ̄dψ+a2 sin2 θ̄dφ)−Msjskci(a2 cos2 θ̄dψ+a1 sin2 θ̄dφ)],

(3.7)

where here and in similar formulae throughout, j and k denote the other two charge

parameters, i 6= j 6= k (so if i = 1, j = 2 and k = 3, and so forth). The charges are defined

as

Qi = M sinh δi cosh δi. (3.8)

– 5 –
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3.1 Adapted coordinates

The foregoing discussion applies to the general family of solutions (2.1); we would like to

specialise to the smooth soliton solutions, and eliminate the dependence on the parameters

to rewrite this solution in a way which makes the dependence on the integer parameters

m,n manifest. This will be helpful in understanding the relation to the supersymmetric

cases, and will also make the structure of our non-supersymmetric solution clearer. In this

subsection, we introduce a new coordinate system adapted to this solution. In the next,

we will consider coordinates which are as close as possible to the coordinates used in the

supersymmetric cases.

We set

ρ2 =
r̄2 − r2

+

r2
+ − r2

−

, x = cos 2θ̄. (3.9)

The range of the coordinates is ρ ≥ 0, −1 ≤ x ≤ 1. In these coordinates,

r̄2dr̄2

g(r̄)
=

dρ2

ρ2 + 1
. (3.10)

and

f − 1

2
M = (r2

+ − r2
−)ρ2 +

1

2
(a2

2 − a2
1)x + r2

+ +
1

2
(a2

1 + a2
2 − M)

= 2c(2ρ2 + 1 − (m2 − n2)x), (3.11)

where

c ≡ r2
+ − r2

−

4
. (3.12)

Thus,

V ≡ f(f − M)

4c2
(3.13)

= 4ρ2(ρ2 + 1) − (m2 − n2)2(1 − x2) − 2(m2 − n2)x(2ρ2 + 1) + 2(m2 + n2).

This now involves only the integer parameters m,n and the single length scale c. We

can continue to calculate the full metric, and we find that we can in a similar fashion

eliminate all the dependence on the parameters in favour of m,n and the single length

scale c by fully exploiting (2.5)–(2.6). Some useful relations which follow from (2.5)–(2.6)

are

Ma1a2 = 16c2nm,

a2
1 − a2

2 = 4c(m2 − n2),

1

2
M(a2

1 + a2
2) = 8c2[(m2 − n2)2 − (m2 + n2)],

1

4
M2 = 4c2[(m2 − n2)2 − 2(m2 + n2) + 1]. (3.14)

Omitting the details of the calculation, we find

k =

√
Q1Q2Q3

4cV
√

mn

{

[2ρ2 − (m2 − n2)(1 + x)]n(1 − x)dφ

− [2ρ2 + (m2 − n2)(1 − x)]m(1 + x)dψ
}

, (3.15)

– 6 –
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and the base metric is

d̄s
2
4 =

dρ2

ρ2 + 1
+

dx2

4(1 − x2)
+

2nm

V
(1 − x2)dφdψ (3.16)

+
1

2V

[

4ρ2(ρ2 + 1) − (m2 − n2)(2ρ2 + 1)(1 + x) + (m2 + n2)(1 + x)
]

(1 − x)dφ2

+
1

2V

[

4ρ2(ρ2 + 1) + (m2 − n2)(2ρ2 + 1)(1 − x) + (m2 + n2)(1 − x)
]

(1 + x)dψ2.

If we define

φ =
1

2
(ϕ − τ), ψ =

1

2
(ϕ + τ), (3.17)

we can also rewrite (3.16) in a fibered form,

d̄s2
4 =

[4ρ2(ρ2 + 1) + (m − n)2(1 − x2)]

4V
(dτ + δdϕ)2 + ds2

3, (3.18)

where

δ =
[4ρ2(ρ2 + 1)x + (m2 − n2)(1 − x2)(2ρ2 + 1)]

[4ρ2(ρ2 + 1) + (m − n)2(1 − x2)]
(3.19)

and

ds2
3 =

dρ2

ρ2 + 1
+

dx2

4(1 − x2)
+

(1 − x2)ρ2(ρ2 + 1)

[4ρ2(ρ2 + 1) + (m − n)2(1 − x2)]
dϕ2. (3.20)

This fibered form is useful for comparison to the base metric in the supersymmetric case,

which is conventionally written in a similar fibered form, and also for analysing the dimen-

sional reduction to four dimensions. The coordinates φ and ψ are 2π periodic. This implies

that τ and ϕ have periodicities

(τ, ϕ) ∼ (τ − 2π, ϕ + 2π), τ ∼ τ + 4π. (3.21)

The fermions will be antiperiodic under (τ, ϕ) ∼ (τ − 2π, ϕ + 2π) and periodic under

τ ∼ τ + 4π. The functions H̃i appearing in the metric become

H̃i = 2c[2ρ2 + 1 − (m2 − n2)x + Ei], (3.22)

where we introduce the convenient constants

Ei ≡
√

Q2
i

4c2
+ [(m2 − n2)2 − 2(m2 + n2) + 1]. (3.23)

It was shown in [1] that H̃i > 0 everywhere which implies Ei > (m2 − n2) − 1. The gauge

fields are

Ai =H̃−1
i

{

Qidt −
√

QjQk

Qi

c√
mn

[

n(m2 − n2 + 1 + Ei)(1 − x)dφ (3.24)

+ m(m2 − n2 − 1 − Ei)(1 + x)dψ
]

}

.
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We can also write the ADM mass and angular momenta of the five-dimensional asymp-

totically flat solution in the Einstein frame (in units where 4G(5)/π = 1) in terms of the

integer parameters as

MADM = 2c(E1 + E2 + E3),

Jψ = −
√

m

n

√

Q1Q2Q3,

Jφ =

√

n

m

√

Q1Q2Q3. (3.25)

This coordinate transformation provides us with a nice form of the metric, which

makes the special nature of the soliton solutions evident. We see that the base metric is

completely independent of the charges or any length scale. The full metric is written in

terms of m,n, the length scale c, and the charges Qi, which enter explicitly only through

the functions H̃i. However, c is not an independent length scale: it should be determined

in terms of the charges and m,n. In the supersymmetric case m = n + 1, we had [16]

csusy =
1

4n(n + 1)

Q1Q2Q3

Q1Q2 + Q1Q3 + Q2Q3
. (3.26)

We should determine how c is related to the charges in the non-supersymmetric case. We

first note that (3.12) is equivalent to

c =
M

4mn
(s−2 − s2)−1. (3.27)

Since s2 is determined in terms of m,n by (2.9), the problem is simply to determine M in

terms of the charges Qi and m,n. Using

Qi = M sinh δi cosh δi = M
tanh δi

1 − tanh2 δi

, (3.28)

we can express s2 = tanh δ1 tanh δ2 tanh δ3 in terms of the Qi and M . We want to solve

this for M as a function of s2 and the charges. The equation can be rearranged to find

that the combination M̄ = M(s−2 − s2)−1 = 4mnc satisfies

(s−2 − s2)Q1Q2Q3M̄
3(Q1M̄ + Q2Q3)(Q2M̄ + Q1Q3)(Q3M̄ + Q1Q2)

+[2Q2
1Q

2
2Q

2
3(Q

2
1 + Q2

2 + Q2
3) − (Q4

1Q
4
3 + Q4

1Q
4
2 + Q4

2Q
4
3)]M̄

4 + 8Q3
1Q

3
2Q

3
3M̄

3

+2Q2
1Q

2
2Q

2
3(Q

2
1Q

2
2 + Q2

1Q
2
3 + Q2

2Q
2
3)M̄

2 − Q4
1Q

4
2Q

4
3 = 0.

(3.29)

In the supersymmetric case, s = 1, the first line is absent, so one can see that (3.26)

satisfies this equation.1 In the non-supersymmetric case, there is no explicit solution for

c in general, but it is determined implicitly in terms of the charges by (3.29). Explicit

solutions are possible in special cases: If all three charges are equal, we can write

c =
Q

4mn

s−2/3 − s2/3

s−2 − s2
. (3.30)

1The equation becomes [(Q1Q2 + Q1Q3 + Q2Q3)M̄ − Q1Q2Q3][(Q1Q2 − Q1Q3 − Q2Q3)M̄ −

Q1Q2Q3][(Q1Q2 − Q1Q3 + Q2Q3)M̄ + Q1Q2Q3)][(Q1Q2 + Q1Q3 − Q2Q3)M̄ + Q1Q2Q3] = 0.

– 8 –
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If one of the charges is much smaller than the other two, say Q3 ≪ Q1, Q2, then

c ≈ Q3

4mn
. (3.31)

This limit is interesting because it is the regime where the type IIB solution has a near-core

AdS3 × S3 geometry.

3.2 Alternative coordinates

The coordinates above provide the simplest description of the solution, but they are not

directly related to the coordinates used for the supersymmetric solutions in [16]. It is

therefore useful to introduce an alternative coordinate system which makes the connection

to the supersymmetric case clearer. These coordinates will also be adapted to studying the

local structure near one of the orbifold singularities, as we will see later.

We therefore introduce new coordinates r, θ through

r =
(r̄2 − r2

+)

4
+ c sin2 θ̄

= c

[

ρ2 +
1

2
(1 − x)

]

,

r cos2 θ

2
=

(r̄2 − r2
+)

4
cos2 θ̄

=
c

2
ρ2(1 + x). (3.32)

The range of the coordinates is r ≥ 0, 0 ≤ θ ≤ π. One could similarly define coordinates

centered on the singularity at ρ = 0, x = −1 by

rc = c

[

ρ2 +
1

2
(1 + x)

]

,

rc cos2 θc

2
=

c

2
ρ2(1 − x), (3.33)

but we will focus henceforth on the r, θ coordinates. It is useful to retain rc, however,

thought of as a function of r, θ given by

r2
c = r2 + 2rc cos θ + c2; (3.34)

then the inverse coordinate transformation is

2c sin2 θ̄ = (r − rc) + c, r̄2 − r2
+ = 2(r + rc − c), (3.35)

or

ρ2 =
(r + rc − c)

2c
, x =

(rc − r)

c
. (3.36)

These coordinates have some nice properties even for the general metric (3.3):

g(r̄) = 4(r + rc)
2 − 4c2, (3.37)
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which can be used to show

g(r̄) sin2 θ̄ cos2 θ̄ = 4r2 sin2 θ (3.38)

and
r̄2dr̄2

g(r̄)
+ dθ̄2 =

1

4rrc
(dr2 + r2dθ2), (3.39)

so this coordinate transformation casts this part of the metric in a conformally flat form

(note that we get a conformally flat form even before restricting to the smooth soliton

solutions). The base metric used in the supersymmetric solutions differs from the one used

up to now by a conformal factor; define

ds2
4 = 2c

√
V d̄s

2
4. (3.40)

The eleven-dimensional metric is then

ds2
11 = −(Z1Z2Z3)

−2/3(dt + k)2 + (Z1Z2Z3)
1/3ds2

4 + ds2
T 6 , (3.41)

with

Zi ≡
H̃i

2c
√

V
=

1

c
√

V
[r + rc + (m2 − n2)(r − rc) + cEi],

V =
1

c2
[(m2 − n2)(r − rc) + (r + rc)]

2 − [(m2 − n2)2 − 2(m2 + n2) + 1],(3.42)

and

k =

√
Q1Q2Q3

8c3
√

mnV

{

−m[(m2 − n2)(r − rc + c) + (r + rc − c)](rc − r + c)(dτ + dϕ)

+ n[(m2 − n2)(r − rc − c) + (r + rc − c)](r − rc + c)(−dτ + dϕ)
}

. (3.43)

The base metric here is (using the angular coordinates (3.17) appropriate for writing the

base as a fibration)

ds2
4 = H−1σ2 + H

[

γ(dr2 + r2dθ2) + r2 sin2 θdϕ2
]

, (3.44)

with

H =
2c
√

V

[((r + rc)2 − c2) − (m − n)2((r − rc)2 − c2)]
, (3.45)

γ =
[((r + rc)

2 − c2) − (m − n)2((r − rc)
2 − c2)]

4rrc
, (3.46)

and

σ = dτ − [((r + rc)
2 − c2)(r − rc) + ((r − rc)

2 − c2)(m2 − n2)(r + rc)]

c[((r + rc)2 − c2) − (m − n)2((r − rc)2 − c2)]
dϕ. (3.47)
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3.3 Relation to the supersymmetric case

The metric (3.41) is in the form used in writing the supersymmetric solutions, so we can

make a detailed comparison to the supersymmetric case. If we set m = n + 1, this metric

should reduce to the familiar two-center supersymmetric solution of [14 – 16]. Indeed, for

m = n + 1, we will have γ = 1, V = 4[(n + 1)r − nrc]
2,

H =
n + 1

rc
− n

r
, (3.48)

and

σ = dτ + [(n + 1) cos θc − n cos θ] dϕ, (3.49)

so the base space (3.44) reduces to the usual Gibbons-Hawking base of the two-center

supersymmetric solution. This base space plays an important role in the study of the

supersymmetric solutions.

Compared to the supersymmetric cases, the obvious novelty in these solutions is that

the base metric (3.44) is no longer of the Gibbons-Hawking form. Indeed, although it is still

a U(1) fibration over a three-dimensional base space, that space is no longer flat, or even

conformally flat, and the function H does not appear to satisfy a harmonic equation on this

base. There is no clear sign of any linear structure in the equations satisfied by this solution

which could be exploited to generate multi-center solitons as in the supersymmetric case.

In the supersymmetric case, an important insight gained from the analysis of the two-

center solutions in [16] was that the signature of the base space switched where H = 0. That

is, the base space was not really a hyper-Kähler manifold, but only pseudo-hyper Kähler.

There is thus a much bigger space of possibilities for the base metric. In the form (3.44),

we still have that for f < 0, H < 0, and for f > M , H > 0, so the base has regions

of positive and negative signature. However, because V < 0 in the intermediate region

0 < f < M , H as defined in (3.45), and hence the 4d metric (3.44), will become imaginary

in this intermediate region. Just as in the supersymmetric case, the full geometry (3.41)

has real components and a definite signature everywhere; this imaginary function is just

an artifact of how we have chosen to decompose the metric into a base and fiber. It hence

does not prevent us from using this decomposition to analyse the equations of motion,

analogous to what was done for the supersymmetric case.

This suggests that if we wanted to look for further non-supersymmetric solutions using

this kind of decomposition, we would need to allow possibilities which included a region

where the base metric becomes imaginary. However, the absence of any nice harmonic

behaviour in this form of the solution suggests that, unlike in the supersymmetric case,

this decomposition may not be particularly useful.

4. Structure of the solution

We now analyse the structure of the solitons in this M-theory form, using the adapted

coordinates. In [1], it was shown that the type IIB solution (2.1) was completely smooth,

but the dualities we have performed mix up the gauge fields and the geometry, so they

– 11 –
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can change the smoothness properties of the metric. We focus on analysing the coordinate

singularities at ρ = 0 or x = ±1. We will see that there are orbifold singularities in the M-

theory form. We will also see that the adapted coordinates are convenient for understanding

the structure of the solution.

It is clear from (3.16) that at x = 1, the circle along ∂φ shrinks smoothly to zero size,

while at x = −1, the circle along ∂ψ shrinks smoothly to zero size. The component of the

gauge field along the circle which shrinks goes to zero, so the gauge fields are also smooth

there.

At ρ = 0, a circle which is a combination of these two shrinks; to analyse this region,

it is convenient to introduce a different set of angular coordinates. We define

φ′ = −lφ − kψ, ψ′ = nφ + mψ, (4.1)

where k, l are integers such that kn − ml = 1. Since we assume m,n are coprime, we

can always find such integers.2 We introduce them so that the identifications φ ∼ φ + 2π,

ψ ∼ ψ + 2π are equivalent to φ′ ∼ φ′ + 2π, ψ′ ∼ ψ′ + 2π. In these coordinates,

k =

√
Q1Q2Q3√
mncV

[

mnρ2dφ′ +
1

4
[−(m2 − n2)(1 − x2) − 2ρ2x + 2(kn + ml)ρ2]dψ′

]

, (4.2)

and

ds̄2
4 =

dρ2

(ρ2 + 1)
+

1

4

dx2

(1 − x2)
+ ρ2dφ′2 +

ρ4

V
[−(m2 − n2)x − (m2 + n2) + 2(ρ2 + 1)]dφ′2

+
ρ2

V
[−(m2 − n2)(km − nl)(1 − x2) − 2(km − nl)x(ρ2 + 1)

+ 2(km + nl)(ρ2 + 1)]dφ′dψ′ +
(1 − x2)

V
dψ′2

+
ρ2

V
[−(k2 − l2)(m2 − n2)(1 − x2) − 2(k2 − l2)x(ρ2 + 1) + 2(k2 + l2)(ρ2 + 1)]dψ′2.

Thus at ρ = 0, the circle along ∂φ′ shrinks smoothly to zero size.

The component of the gauge field along ∂φ′ is

(Ai)φ′ = −
√

QjQk

Qi

√
mn

(

1 − 4cρ2

H̃i

)

. (4.3)

As ρ → 0, it goes to a constant, which gives a non-zero holonomy around the shrinking

circle,
∮

φ′ Ai = −2π
√

QjQk

Qi

√
mn. Can this be removed by a large gauge transformation?

In the type IIB picture, the gauge field associated with qp comes from a Kaluza-Klein

reduction, so we know that Ap → Ap + Rdφ′ is an allowed large gauge transformation.

Using (2.5)–(2.6), we can show R =
√

q1q5

qp

√
mn. Regarding each of the gauge fields in

turn as arising as the Kaluza-Klein gauge field in a distinct reduction from type IIB, we

can argue that

Ai → Ai +

√

QjQk

Qi

√
mndφ′ (4.4)

2If m, n are not coprime, we could write m = am̄, n = an̄, with m̄, n̄ coprime, and proceed as above,

with kn̄ − lm̄ = 1. In this case, there will be a Za orbifold singularity at ρ = 0.
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are indeed allowed large gauge transformations. That is, the gauge group is a circle of

size 2π
√

QjQk

Qi

√
mn, and the holonomy around any cycle takes values in this circle, so any

holonomy that is an integer multiple of the size of the circle is actually equivalent to zero

holonomy. Thus, the gauge fields have zero holonomy up to gauge transformations, and

the gauge fields are also smooth at ρ = 0.

We should finally consider what happens at ρ = 0, x = ±1, where two circles shrink

simultaneously. There will be orbifold singularities at these points.

4.1 Orbifold singularities

The most interesting feature of the non-supersymmetric solitons in this five-dimensional

picture is the way in which they differ from the supersymmetric case in their local struc-

ture near the points ρ = 0, x = ±1. As in the supersymmetric case, there are orbifold

singularities at these points. However, in the present case these are non-supersymmetric

orbifolds. Hence, the supersymmetry is broken not just in the full asymptotically flat solu-

tion, but even by the local solution describing the geometry near the singular points. This

is somewhat surprising, as supersymmetry is not broken locally in the type IIB solution. In

this section, we will explore the local structure, showing that the supersymmetry is broken

locally, and explain the relation to the type IIB solution. We conclude from this local

breaking of the supersymmetry that the picture of the smooth supersymmetric solutions

as made up of 1/2 BPS ‘atoms’ [24] does not extend to the present case.

Let us consider the point ρ = 0, x = 1, and study it in the r, θ coordinates introduced in

section 3.2, where it corresponds to r = 0. Near r = 0, V ≈ 4n2, H̃i ≈ 2c[−(m2−n2)+1+Ei]

is a constant, and k ≈ 0, so the full geometry decomposes as a flat R
1,6 cross the four-

dimensional base space (3.44). In the base space, rc ≈ c + r cos θ,

γ ≈ 1

2
[(1 + cos θ) + (m − n)2(1 − cos θ)], (4.5)

and

Hγ =
2c
√

V

4rrc
≈ n

r
. (4.6)

Finally, the fiber is

σ ≈ dτ +
1

2γ
[(1 + cos θ) + (m2 − n2)(1 − cos θ)]dϕ. (4.7)

We introduce a new radial coordinate r̃ =
√

r, so the base space can be written, up to an

irrelevant constant scale factor, as

ds2
4 = dr̃2 + r̃2

(

dθ2

4
+

1

4γ
sin2 θdϕ2 +

γ

4n2
σ2

)

. (4.8)

The geometry looks locally like a cone over

dΣ2 =
dθ2

4
+

1

4γ
sin2 θdϕ2 +

γ

4n2
σ2. (4.9)
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This is an orbifold of S3. If we start from S3 in the standard form

dΣ2 =
dθ2

4
+

1

4
sin2 θdϕ′2 +

1

4
(dτ ′ − (1 − cos θ)dϕ′)2, (4.10)

we can obtain (4.9) by the transformation

τ ′ =
1

n
(τ + ϕ), (4.11)

ϕ′ = −(m − n − 1)

2n
τ − (m + n − 1)

2n
ϕ. (4.12)

The periodicities (3.21) of τ and ϕ in our solution then imply that τ ′ and ϕ′ are identified

under ϕ′ ∼ ϕ′ − 2π and (τ ′, ϕ′) ∼ (τ ′ + 4π/n, ϕ′ − (m− n− 1)2π/n). This defines a freely-

acting Zn quotient of S3, which is referred to in the mathematical literature as a lens space,

denoted L(n,m) [28, 29].3 In the supersymmetric case m = n + 1, this is L(n, 1), and the

second identification becomes τ ′ ∼ τ ′ + 4π/n, so the quotient just acts on the canonical

fiber of the S3. This is no longer true in the non-supersymmetric cases.

There is thus a Zn orbifold singularity at r = 0. We can make this manifest by defining

complex coordinates

u1 = r̃ sin
θ

2
eiτ ′/2

= r̃ sin
θ

2
ei(τ+ϕ)/2n,

u2 = r̃ cos
θ

2
ei(τ ′−2ϕ′)/2

= r̃ cos
θ

2
ei[(m−n)τ+(m+n)ϕ]/2n, (4.13)

in terms of which the local geometry is simply flat C
2, and the identification τ ∼ τ + 4π

acts as

u1 ∼ u1e
2πi/n, u2 ∼ u2e

2πi(m−n)/n. (4.14)

The geometry is thus a non-supersymmetric C
2/Zn orbifold of the kind discussed for ex-

ample in [30, 31]. The supersymmetry is broken except in the special case m = n + 1;

the identifications (4.14) do not preserve any Killing spinors. If m = n + 1, it is the usual

supersymmetric C
2/Zn orbifold (note the fermions are periodic under τ ∼ τ + 4π in the

full geometry, so we have the supersymmetry-preserving choice of spin structure on the

orbifold).

However, this is not the end of the story; we also need to consider the gauge fields.

Near r = 0,

Ai =
Qi

H̃i

dt +

√

QjQk

Qi

√
mn

2
dτ ′. (4.15)

3Note that the lens spaces L(n, m) and L(n, m′) are homeomorphic for m = ±m′ mod n or mm′ = ±1

mod n.
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Thus, the holonomy of the gauge field around the orbifold circle is

∮

τ ′

Ai = 2π

√

QjQk

Qi

√
mn

1

n
. (4.16)

This is a fractional holonomy; it cannot be removed by a large gauge transformation,

which can only shift the holonomy by an integer multiple of 2π
√

QjQk

Qi

√
mn, as argued in

the previous section.4

The presence of this holonomy makes this orbifold qualitatively different from the one

considered in [30], even though the geometry is the same. It makes the total space of

the gauge bundle regular at r = 0. Although the direction the orbifold acts on in the

base shrinks to zero size at r = 0, the orbifold also involves a shift along the fiber given

by (4.16), so there is a free action on the total space. Thus, the local orbifold singularity

will be “frozen”; as in [32], the presence of this non-trivial holonomy prevents us from

resolving the singularity by deforming it to a smooth ALE space with trivial fundamental

group. Note that the singularity is frozen even in the supersymmetric case m = n + 1.

This freezing of the singularity also suggests that there is no tachyon in the winding sectors

in this non-supersymmetric orbifold as there is no natural endpoint for the condensation

of such a tachyon. Indeed, we will see below that there is no tachyon, by considering the

relation to the type IIB description.

The fact that the total space of the gauge bundle is smooth also explains how this

non-supersymmetric orbifold can arise from a smooth geometry in six dimensions. In the

Kaluza-Klein reduction to five dimensions, the fiber always has finite size, so we might be

surprised that there is a singularity in the base, but the fractional holonomy explains how

this arises: even though the total space is smooth and the fiber is not degenerating, the

connection is not well-behaved at this point.

Since the type IIB solution is smooth, it is also supersymmetric locally, in a neighbour-

hood of any point,5 but the orbifold we obtained locally at r = 0 is non-supersymmetric. It

is useful to consider carefully what happens to the supersymmetry under the duality from

the type IIB to the M-theory picture. The key step is the reduction to a five-dimensional

solution from the type IIB solution (2.1) on S1
y × T 4. Recall that in the type IIB solution,

there is a circle which shrinks smoothly to zero size at r̄ = r+. The solution thus has a

unique spin structure, which is antiperiodic around this circle, and also around each of the

two contractible S1s in S3 (parametrized by the coordinates φ and ψ above). Imposing the

latter two conditions, the Killing spinor must be of the general form

ǫ = eiǫ1α y

2R eiǫ2
φ

2
+iǫ3

ψ

2 f(r̄, θ̄)ǫ0. (4.17)

for some real α and constant spinor ǫ0, with three independent sign choices ǫ1, ǫ2, ǫ3 = ±1.

To impose the antiperiodicity on the degenerating circle, note that going once around the

4Note that the gauge field is however well-behaved in the covering space S3, as we would in general

expect. That is, this gauge field can be thought of locally as arising from the orbifolding of a well-behaved

gauge connection on the covering space.
5And if we take one charge small, the type IIB solution will have a near-core region which is approximately

AdS3 × S3, so supersymmetry is actually restored in the whole near-core region.
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circle which shrinks to zero at r̄ = r+ corresponds to going once around the y circle,

−m times around the φ circle, and n times around the ψ circle. Thus, we must have

α = 1 + ǫ1ǫ2m − ǫ1ǫ3n to produce the correct antiperiodic behaviour around this circle.

That is, the Killing spinor will be

ǫ = ei(ǫ1+ǫ2m−ǫ3n) y

2R eiǫ2
φ

2
+iǫ3

ψ

2 f(r̄, θ̄)ǫ0 = eiǫ1
y

2R eiǫ2(m y

2R
+ φ

2
)e−iǫ3(n y

2R
−ψ

2
)f(r̄, θ̄)ǫ0. (4.18)

We get a five-dimensional solution by reducing on the y circle. In the case m = n + 1,

where the whole solution is supersymmetric, the Killing spinor (4.18) with ǫ2 = ǫ3 =

−ǫ1 is constant around the y circle. For the non-supersymmetric solutions, the Killing

spinor (4.18) will not be constant around the y circle for any choice of signs. As a result, it

does not give rise to a Killing spinor in the lower-dimensional theory. To see this, note that

we obtain the five-dimensional gravitino from the constant mode of the six-dimensional

gravitino.6 Thus, we cannot obtain a supersymmetry in the five-dimensional solution from

the supersymmetry in the six-dimensional solution: the Killing spinor which provides the

supersymmetry parameter for the six-dimensional solution descends to a spinor field on

the five-dimensional solution which is charged under the Kaluza-Klein gauge field, so it

cannot be the parameter for a variation of the gravitino, which is not charged under the

Kaluza-Klein gauge field.

That is, although the local six-dimensional geometry has a supersymmetry even for

non-supersymmetric solitons, this supersymmetry is not visible in the five-dimensional

solution. This is an example of the phenomenon of “supersymmetry without supersymme-

try” [33]. It may seem surprising that there is such a connection between whether the local

orbifold singularities in the five-dimensional solution preserve supersymmetry and whether

the full type IIB solution does; but in both cases, the condition to preserve supersymmetry

is that the Killing spinor is constant around the y circle.7

This relation to the type IIB solutions also implies that there is no instability of the

local geometry. That is, there will not be any winding tachyon modes of the type studied

in [30]. The absence of tachyons is clear from the type IIB solution: we would not expect

any tachyon modes in the smooth soliton geometry, and in the cases where there is a

near-core AdS3×S3 geometry, this supersymmetric solution is known to have no tachyons.

Intuitively, we can understand the effect of the holonomy as requiring twisted sector strings

to “stretch” along the fiber direction, making an additional contribution to their energy

and lifting the tachyons up to positive mass-squared.

To summarize our analysis of the M-theory form of the solitons, we have found

that the five-dimensional solution is smooth except at two points, where we have non-

supersymmetric orbifold singularities. Thus, the solution has a “two-center” structure,

which is similar to the simplest supersymmetric solitons. However, these centers do not

6This is true if we work in the sector where m + n is odd. If m + n is even, the spin structure on the

six-dimensional solution does not give rise to a spin structure on the five-dimensional solution, as we are

Kaluza-Klein reducing on a circle with antiperiodic boundary conditions for the fermions.
7In the full type IIB solution, this arises from the fact that in the asymptotically flat region, the only

possible Killing spinors are constant around the y circle.
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preserve any supersymmetry, even locally. This is one of the main lessons from our analy-

sis: the picture of the supersymmetric solutions in [24], in which they were understood as

built up of 1/2 BPS “atoms”, does not extend to the non-supersymmetric solutions of [1].

Even the atoms are not supersymmetric. It would be very interesting to have some further

characterization of what atoms may be possible.

5. Reduction to four dimensions

In this section we examine Kaluza-Klein reductions of our solution to four dimensions. Our

ambition in considering these reductions was to find a description of the non-BPS atoms

in terms of brane systems in IIA. Unfortunately, we have failed to achieve this, but it is

perhaps instructive to explain how it goes wrong.

We would like to have a reduction which is smooth away from the centers at ρ =

0, x = ±1. Considering the local geometry near r = 0, this amounts to asking for a

representation of the lens space (4.9) as an S1 bundle over some smooth two-dimensional

manifold. In the supersymmetric case m = n+1, γ = 1, and (4.9) is already of the desired

form: the S1
τ is fibered over S2. However, in the general case, there is a problem. Since

γ(θ = 0) = 1, the two-dimensional space is still smooth at θ = 0, but γ(θ = π) = (m−n)2,

so the two-dimensional space has a Z|m−n| orbifold singularity along θ = π. In the full

four-dimensional geometry, this will form a line conical singularity connecting the two

centers.

Is there some other, inequivalent way to represent the lens space as an S1 bundle that

avoids this problem? Start from the metric in the manifestly locally S3 form (4.10), and

consider the general S1, which is

(τ ′, ϕ′) ∼
(

τ ′ + 4π
e

n
, ϕ′ − 2π

(m − 1)e

n
+ 2πf

)

(5.1)

for some coprime integers e, f .8 We introduce coordinates τ̄ and ϕ̄ through

τ ′ =
e

n
τ̄ + 2

g

n
ϕ̄,

ϕ′ =
1

2

(

−(m − 1)e

n
+ f

)

τ̄ +

(

−(m − 1)g

n
+ h

)

ϕ̄, (5.2)

where g, h are integers such that eh − fg = 1. The S1 cycle (5.1) is along ∂τ̄ in these

coordinates, and the identifications are τ̄ ∼ τ̄ + 4π, ϕ̄ ∼ ϕ̄ + 2π. Rewriting (4.10) in these

coordinates, it becomes

dΣ2 =
dθ2

4
+

1

4G
sin2 θdϕ̄2 +

G

4n2
σ̄2, (5.3)

where σ̄ = dτ̄ + Fdϕ̄ (the precise form of F will not be necessary for our arguments), and

G = sin2 θ((m − 1)e − nf)2 +

[

e +
1

2
(1 − cos θ)((m − 1)e − nf)

]2

. (5.4)

8If e, f are not coprime, the cycle is not primitive — it is an integer multiple of some other cycle, and

we should consider instead the corresponding primitive cycle.
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Thus, we can make the two-dimensional metric smooth at θ = 0 by choosing e = ±1, and

we can make it smooth at θ = π by choosing me − nf = ±1.9 But we cannot satisfy both

conditions simultaneously unless m = ±1 mod n, that is, unless we are considering the lens

space L(n, 1) which arises in the supersymmetric case.

The conclusion is thus that in the general case, the best we can do is to make the

solution smooth on one of the two axes near r = 0. It seems sensible to keep the solution

smooth at large distances; we thus turn to considering in a little more detail the reduction

along ∂τ , which has a Z|m−n| conical singularity connecting the two centers. To do so,

we first need to rewrite the metric in the usual Kaluza-Klein form. The metric is of the

general form

ds2
5 = −A(dt + β(dτ + δdϕ) + ωdϕ)2 + B(dτ + δdϕ)2 + Cds2

3, (5.5)

where δ was given in (3.19) and ds2
3 was given in (3.20). It can be written as

ds2
5 = (B−Aβ2)

[

dτ + δdϕ − Aβ

B − Aβ2
(dt + ωdϕ)

]2

− AB

B − Aβ2
(dt+ωdϕ)2 +Cds2

3. (5.6)

If we then reduce along τ , the last two terms will give the four-dimensional geometry.

Thus, the three-dimensional metric in (3.20) is the base space for the four-dimensional

geometry: we repeat it here,

ds2
3 =

dρ2

ρ2 + 1
+

dx2

4(1 − x2)
+

(1 − x2)ρ2(ρ2 + 1)

[4ρ2(ρ2 + 1) + (m − n)2(1 − x2)]
dϕ2. (5.7)

In the supersymmetric case m = n + 1, the base metric (3.20) is flat. In the non-

supersymmetric case, it is not even conformally flat. We can see directly that it is smooth

along the axes which extend to infinity, at x = ±1, and has a conical singularity between

the two centers, along the line at ρ = 0. Also, there are curvature singularities in this base

metric at ρ = 0, x = ±1. These are in addition to the curvature singularities in the full

four-dimensional metric which will arise from the fact that the dilaton is diverging at these

points.

To simplify the Kaluza-Klein reduction, it is better to change to the coordinate τ ′ =

τ + ϕ, so that the identifications are simply ϕ ∼ ϕ + 2π and τ ′ ∼ τ ′ + 4π. From the

Kaluza-Klein point of view, this is a gauge transformation which shifts δ → δ ′ = δ − 1.

The Kaluza-Klein gauge field coming from this reduction is

AKK = δ ′dϕ − Aβ

B − Aβ2
(dt + ωdϕ), (5.8)

where

ω = −
√

Q1Q2Q3

4c
√

mn

(m − n)ρ2(1 − x2)

[4ρ2(ρ2 + 1) + (m − n)2(1 − x2)]
, (5.9)

9This corresponds to a reduction of the full solution along the ψ′ coordinate. We can easily see that

the base metric (3.16) will be smooth at ρ = 0 for such a reduction, but will have conical singularities

along x = ±1. Locally near ρ = 0, these two reductions are analogous to the reductions of a flat metric

ds2 = dr2 + r2dφ2 + R2(dτ + dφ)2 with the identifications φ ∼ φ + π, τ ∼ τ + 2π. If we reduce this along

τ , we get a flat space with a Z2 orbifold. If we reduce instead along φ, we get a smooth fluxbrane solution

in two dimensions.
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and after the above gauge transformation,

δ ′ =
[4ρ2(ρ2 + 1)(x − 1) + (m2 − n2)(1 − x2)2ρ2 + 2n(m − n)(1 − x2)]

[4ρ2(ρ2 + 1) + (m − n)2(1 − x2)]
. (5.10)

Since ω = 0 at ρ = 0 and at x = ±1, the second factor in AKK will not contribute to

holonomies at these points. We therefore do not write it more explicitly. The factor of

B−Aβ2, which will give the dilaton of the four-dimensional solution, is more complicated:

B − Aβ2 =
(H̃1H̃2H̃3)

1/3

4V
[4ρ2(ρ2 + 1) + (m − n)2(1 − x2)] (5.11)

− Q1Q2Q3

(H̃1H̃2H̃3)2/316V mn
{2ρ2[(m+n)+x(m−n)]+(m−n)2(m+n)(1−x2)}2.

After a lot of algebra, and using the constraint (3.29) that determines c in terms of the Qi,

the factor of V cancels, and this can be written as

B − Aβ2 =
1

(H̃1H̃2H̃3)2/3

{

Q1Q2Q3

16mn
[4ρ2 + (m − n)2(1 − x2)] (5.12)

+ 2c3[2ρ2+1−(m2−n2)x+E1+E2+E3][4ρ
2(ρ2 + 1)+(m−n)2(1−x2)]

}

.

This clearly vanishes at ρ = 0, x = ±1. We will thus have singularities of the four-

dimensional metric and dilaton at these points. It will not vanish at any other point, as

Ei > (m2 − n2) − 1, so both terms are positive away from ρ = 0, x = ±1.

In the supersymmetric case, we would view the singularities at ρ = 0, x = ±1 as

D6-branes. Here, however, an attempt to define the charge carried by these singularities

is obstructed by non-trivial holonomies around the conical singularity. The Kaluza-Klein

gauge field which arises in the reduction from five to four dimensions has a non-trivial

holonomy around the conical line at ρ = 0,
∮

ϕ
AKK|ρ=0 = 4π

n

(m − n)
. (5.13)

Note that for m = n + 1, this is an integer multiple of 4π, and hence gauge-equivalent to

zero. This fractional holonomy in the general case implies that there is a delta-function

singularity in the field strength FKK along ρ = 0, and we cannot associate separate Kaluza-

Klein charges with the two singularities at ρ = 0, x = ±1. Thus, we cannot interpret the

singularities as due to the presence of D-branes at these points, since we cannot unambigu-

ously define brane charges associated with the singularities.10

Similarly, for the gauge fields Ai, we can decompose

Ai = A′
i + α

[

dτ + δdϕ − Aβ

B − Aβ2
(dt + ωdϕ)

]

, (5.14)

10Note that the total charge carried by the two singularities is still well-defined. The integral of the

flux over a sphere enclosing the whole line at ρ = 0 is
R

FKK =
H

ϕ
AKK|x=1 −

H

ϕ
AKK|x=−1 = 4π, so the

structure carries one unit of KK monopole charge through a surface at large distance. That is, the solution

is asymptotically flat in five dimensions.
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and interpret A′
i as the four-dimensional gauge field.11 We find that A′

iϕ = 0 at x = ±1.

Once again, ω vanishes along ρ2 = 0, so near the conical line singularity,

A′
iϕ ≈ Aiϕ − δAiτ . (5.15)

Hence at ρ = 0 we find

∮

ϕ
A′

i|ρ=0 = −2π

√

QjQk

Qi

√
mn

1

m − n
, (5.16)

showing the same fractional holonomy for these gauge fields as well. As for the Kaluza-

Klein gauge field, this implies that the charges associated with the two singularities at

ρ = 0, x = ±1 are ambiguous.

We saw in the previous section that the M-theory solution has non-supersymmetric

orbifold singularities at ρ = 0, x = ±1. We had hoped that the reduction to four dimen-

sions would clarify the interpretation of these singularities. However, the four-dimensional

solution has some new features (compared to the supersymmetric case) which make it diffi-

cult to extract a brane interpretation of these singularities. The four-dimensional solution

has curvature singularities only at ρ = 0, x = ±1; however, it also has a line conical sin-

gularity connecting these two curvature singularities, along ρ = 0. This conical singularity

makes it impossible to unambiguously assign charges to the two curvature singularities.

Also, the curvature singularities at ρ = 0, x = ±1 arise from a divergence of the dilaton

(as in the supersymmetric case) but also from a singularity in the three-dimensional base

metric at these points. It is not clear what interpretation we could give to this additional

singularity from a brane construction point of view. The geometry describing a D6-brane

has a flat base space, and just gets a curvature singularity from the divergence of the

dilaton at the brane’s position. Thus, in the non-supersymmetric case, the centers do not

have a clear D-brane interpretation. It would be interesting to see whether and how this

local structure is changed for non-supersymmetric solutions which are asymptotically flat

in four dimensions.
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